Mostrando postagens com marcador fórmulas. Mostrar todas as postagens
Mostrando postagens com marcador fórmulas. Mostrar todas as postagens

quinta-feira, 7 de janeiro de 2010

Exercício sobre Mistura de Superfosfatos

Muitas vezes o produtor tem fertilizante que sobrou de safras passadas e que podem ser usados, complementando-se as necessidades de nutrientes com a compra do mesmo fertilizante ou de outro que tenha o mesmo nutriente exigido. Claro que o custo benefício vai ser levado em consideração na hora da compra: ou o mesmo fertilizante ou misturá-lo com outro de maior concentração do nutriente.
Um produtor tem estocado na sua propriedade 360 sacos de superfosfato simples. Ele deseja fazer a correção do solo com a recomendação de 90 kg/ha de P2O5. A área total destinada à lavoura é de 180 hectares. A intenção é comprar o superfosfato triplo que possui 42% de P2O5, para completar as necessidades. Quantos sacos deverá comprar e qual a relação da mistura ?
Necessidade total de P2O5 = 180ha x 90 kg P2O5 = 16.200 kg P2O5
1) Fósforo (em P2O5) fornecido pelo superfosfato simples (SS):
360 sacos x 50 kg = 18.000 kg de SS = 18 t de SS
em 100 kg SS .................. 18 kg P2O5
em 18.000 kg SS ..................... X ......
X = (18.000 x 18) / 100 = 3.240 kg P2O5
Temos que complementar o P2O5
16.200 – 3.240 = 12.960 kg de P2O5
2) Utilizando o super triplo (ST) com 42% P2O5 100 kg ST .................. 42 kg P2O5
......X......................... 12.960 kg P2O5
X = (100 x 12.960) / 42 = 30.857 kg = 30,85 t de ST
Ou podemos fazer o cálculo já direto em toneladas pois 100 kg ST= 42 kg P2O5; 1.000 kg(1t) = 420 kg P2O5
1 t ST ............... 420 kg P2O5
......X...............12.960 kg P2O5
X = 30,85 toneladas de ST
A relação será: 30,85/18 = 1,71/1
"Para cada tonelada de SS, mistura-se 1,71 toneladas de ST. Ou, para cada saco de 50 kg de SS, 1,7 sacos de ST (85 kg)".

quinta-feira, 19 de novembro de 2009

Mistura de Calcários para manter a Relação Ca/Mg

Para manter a relação Ca/Mg precisamos misturar os calcários calcítico e dolomítico em quantidades que forneçam os nutrientes Ca e Mg dentro dos parâmetros da relação. Para isto precisamos conhecer os teores de CaO e MgO dos mesmos sendo que os calcíticos contém somente CaO.

Por exemplo, um solo apresenta 0,8 cmolc/dm³ de Ca e 0,2 cmolc/dm³ de Mg, portanto uma relação 4/1. Qual seriam as quantidades de calcários calcítico e dolomítico para manter esta relação. O calcário calcítico possui 55% de CaO enquanto o dolomítico apresenta 28% de CaO e 12% de MgO.
1º Passo: Vamos calcular quantos cmolc/dm³ de Ca e Mg estão sendo empregados, por hectare, com os produtos acima:
1% CaO = 1 kg de CaO/100 kg de calcário = 10 kg/1000 kg =10 kg/t
Considerando os pesos atômicos do Ca e O, respectivamente 40 e 16 (arredondado), teremos:
CaO ................ Ca
(40+16)........... 40
Em 56 kg CaO ............ 40 kg Ca
Em 10 kg CaO ..............X kg Ca
X = (10 x 40) / 56 = 7.14706 kg Ca 0u 7.147,06 g Ca
1 cmolc Ca = peso atômico (g)/valência/100. Sendo peso atômico do Ca igual a 40 e valência igual a 2
1 cmolc Ca = 40/2/100 = 0,2004 g Ca
Logo, 1 cmolc Ca corresponde 0,2004 g Ca
............... X ...................... 7.147,06 Ca
X = (7.147,06 x 1) / 0,2004 = 35.663,973 cmolc de Ca.

Em relação ao Mg teríamos:

MgO .................. Mg
24+16 ............... 24
Em 40 kg MgO ............. 24 kg Mg
Em 10 kg MgO ................... X ...
X = (10 x 24) / 40 = 6,031108 kg Mg = 6.031,108 g Mg
1 cmolc Mg = peso atômico (g)/valência/100
1 cmolc Mg = 24 g/2/100 = 0,012156 g Mg
1 cmolc Mg .................0,012156 g Mg
............ x..................6.031,108 g Mg
X = 49.142,48 cmolc Mg
Portanto, para cada 1% de CaO e MgO, a aplicação de 1 t/ha forneceria:
35.663,973 cmolc Ca
49.142,480 cmolc Mg
.

2º Passo: calcular quanto cmolc C/ha e cmolc Mg/ha fornece os totais de CaO e MgO dos calcários em análise
:
Usando o calcário calcítico com 55% de CaO
55 x 35.663,973 = 1.961.518,515 cmolc Ca/ha
Considerando que um hectare de terra, na profundidade de 0-20 cm corresponde a 2.000m³ ou 2.000.000 dm³ teremos:
1.961.518,515 cmolc Ca corresponde 2.000.000 dm³
................. X ....................................... 1 dm³.....
X = 0,98 cmolc Ca/dm³

Usando o calcário dolomítico (28% de CaO e 12% de MgO):
28 x 35.663,973 = 998.591,24 cmolc Ca/ha
12 x 49.142,480 = 589.709,76 cmolc Mg/ha
998.591,24 cmolc Ca corresponde 2.000.000 dm³
..................x.................................. 1 dm³ .....
X = 0,49 cmolc Ca/dm³
589.709,76 cmolc Mg corresponde 2.000.000 dm³
..................x................................... 1 dm³
X = 0,29 cmolc Mg/dm³
Como queremos manter a relação 4:1 e se o dolomítico fornece 0,29 cmolc Mg/dm³ precisamos 4 vezes mais de Ca ou seja 4x0,29 = 1,16
cmolc Ca/dm³.
Ora o dolomítico já fornece 0,49 cmolc Ca/dm³ e precisamos repor a diferença de 0,67 cmolc Ca/dm³ (1,16 – 0,49) com a utilização do calcário calcítico.
1000 kg calcário calcítico fornece 0,98 cmolc Ca/dm³
................. X......................... 0,67 cmolc Ca/dm³
X = 685 kg de calcário calcítico
Conclusão: para cada 1.000 kg de calcário dolomítico devemos adicionar 685 kg de calcário calcítico para manter a relação Ca/Mg de 4:1

terça-feira, 10 de novembro de 2009

Misturando Fertilizantes Simples na Propriedade Rural

Uma das preocupações de técnicos, estudantes e produtores é como calcular as quantidades de matérias-primas de fertilizantes para que se consiga uma fórmula de adubo que se deseja ou foi recomendada para aplicar na lavoura. Muitos preferem comprar as matérias-primas e misturá-las na propriedade: para isto necessitam de um misturador. As empresas de fertilizantes fazem isto no seu parque industrial; só de que maneira mais complexa, pois precisam de granuladores, misturadores, ensacadeiras, laboratórios de qualidade, etc., e, finalmente, comercializar e entregar o produto.
Tenho recebido alguns e-mails de pessoas interessadas em misturar os fertilizantes simples na sua propriedade. Aqui vai uma série de passos a serem seguidos.


As garantias expressas na Tabela 1 são mínimas exigidas pela Legislação Brasileira de Fertilizantes. Podemos encontrar produtos com valores maiores em nutrientes. Produtos com valores abaixo do mínimo não podem ser comercializados.

Obtenção de uma fórmula 00-20-20.
Utilizaremos o cloreto de potássio com 60% de K2O, o super fosfato triplo com 42% de P2O5 e o superfosfato simples com 18% de P2O5.
O que devemos ter em mente é que toda a formulação de fertilizante é calculada para 1.000 kg do produto.
Quando se fala que um produto, no caso supertriplo, tem 42% de P2O5, isto quer dizer que em 100 kg de supertriplo teremos 42 kg de P2O5.

1° Passo:
Começamos sempre pelo potássio pois em 90% dos casos a única matéria-prima mais utilizada como fornecedora de potássio (K2O) é o cloreto de potássio (KCl).
Empregaremos a fórmula:

Logo, aplicando a fórmula acima,
KCl kg = (20/60) x 1000 = 335 kg (arredondando).
Portanto, já temos uma matéria-prima que vai fornecer os 20 da fórmula 00-20-20, ou seja, 335 kg de cloreto de potássio.

2° Passo:
Então, 1.000 – 335 = 665 kg que faltam para completar a tonelada de fertilizante misturada e que devemos partir para fertilizantes simples fosfatados a fim de conseguir os outros 20 da fórmula.
Se utilizássemos somente o supertriplo vamos chegar a uma concentração de fósforo na mistura.
Empregando a fórmula abaixo teremos:
Onde:
NF = % de nutriente na mistura.
QMP = quantidade de matéria-prima.
TN = teor de nutriente na matéria-prima.
Aplicando:
NF(P2O5) = (665x42) / 1.000 = 27,9% de P2O5. Arredondando: 28
Ora, neste caso, teríamos a fórmula de adubo 00-28-20.
Mas não queremos 28% de P2O5. Nossa meta é 20% de P2O5.
Para isto precisamos adicionar um outro fertilizante fosfatado com menor teor de fósforo. Vamos utilizar, neste caso, o superfosfato simples que contém 18% de P2O5.
Precisamos lançar mão de equações matemáticas para atingir nosso objetivo. Seja, a = supertriplo e b = superfosfato simples.
(1)   a + b = 665 ( a soma da quantidade dos dois superfosfatos deve ser 665 kg).
(2)   42a + 18b = 20000 ( a soma de cada matéria prima multiplicada pelo seu respectivo teor de nutriente deve nos dar os 20 de P2O5 que buscamos em 1000 quilos de mistura).
Se a + b  = 665  logo   a = 665 - b. Substituindo em (2):
42(665-b) + 18b = 20.000
27.930 – 42b + 18b = 20.000
-42b+ 18b = 20.000 – 27.930
-24b = - 7.930 ou  24b = 7.930
b = 7.930/24 = 330 kg de superfosfato simples.
Vimos que a = 665 – b
a = 665 – 330 ; a = 335 kg de superfosfato triplo.

3° Passo:
Aplicando as quantidade de matérias-primas utilizadas, nossa fórmula de fertilizante 00-20-20 estaria assim constituída em quantidade das mesmas e em garantias de nutrientes, conforme a tabela abaixo.


A nossa mistura 00-20-20 forneceria, também 4% de enxofre (S) e 10% de cálcio (Ca). Como lidamos com porcentagens, em cada 100 kg desta fórmula aplicada ao solo, a adição de nutrientes seria:
Zero kg de nitrogênio (N); 20 kg de fósforo (P2O5); 20 kg de potássio (K2O); 4 kg de enxofre (S); e 10 kg de cálcio (Ca).
Fácil, não é? Mas uma outra pergunta pode aparecer: e se eu quero uma mistura 05-30-15? Que tenha os três nutrientes: NPK. Então clique abaixo e acompanhe os cálculos para chegar à formulação 05-30-15.
Aqui temos a entrada do nitrogênio. É a única diferença. Mas vamos ao cálculo desta mistura de fertilizantes.

1° Passo:
Começaremos sempre do potássio.
Aplicando a fórmula do exercício anterior;


KCl = (15x60) / 1.000 = 250 kg de cloreto de potássio.

2° Passo:
Quando se tem o nitrogênio na fórmula de fertilizantes, após o potássio ele é o elemento a ser calculado em seguida. Vamos utilizar fertilizante simples nitrogenado ou nitrogenado-fosfatado.
A matéria-prima nitrogenada-fosfatada é a mais utilizada porque fornece, ao mesmo tempo, nitrogênio e fósforo. Vamos usar o DAP (diamônio fosfato) que contém 16% N e 45% de P2O5.
Precisamos 5% de N
Logo: aplicando o mesmo cálculo para achar a quantidade de cloreto de potássio, teremos:
 DAP (kg) = 5/16 x 1.000 = 312,5 kg
Entretanto, o nosso DAP fornece, além do N,  45% de P2O5.
P2O5% do DAP = 312,5 x 46 /1.000 = 14,375 kg de P2O5.
Se não quiséssemos usar DAP, poderíamos utilizar uréia, ou sulfato de amônio. Faça os cálculos usando estes nitrogenados.

3° Passo:
É o mesmo raciocínio do exercício anterior. Precisamos de 30% de fósforo e o DAP já forneceu 14,375%. Faltam, portanto, 15,625% (30-14,375). Em termos de quantidades, até agora temos 250 kg de KCl e 312,5 kg de DAP que dão um total de 562,5 kg de matérias-primas. Faltam, então, 437,5 kg de produto a ser adicionado para completar os 1.000 quilos de mistura. Vamos utilizar os superfosfatos simples e triplo.
a + b = 437,5 quilos
a = 437,5 – b
42a + 18b = 15.625
42(437,5-b) + 18b = 15.625
18.375 – 42b + 18b = 15.625
-42b + 18b = 15.625 – 18.375
-24b = -2.750 ; multiplicando por (-1) 24b = 2.750
b = 2.750/24 = 114,5 kg de superfosfato simples
a = 437,5 – b ; a = 437,5 – 114,5 = 323 kg de supertriplo
A constituição de nossa mistura 05-30-15 estaria assim formada


A nossa mistura 05-30-15 forneceria, também 5% de enxofre (S) e 6% de cálcio (Ca). Como lidamos com porcentagens, em cada 100 kg desta fórmula aplicada ao solo, a adição de nutrientes seria:
5 kg de nitrogênio (N); 30 kg de fósforo (P2O5); 15 kg de potássio (K2O); 5 kg de enxofre (S); e 6 kg de cálcio (Ca).

terça-feira, 3 de novembro de 2009

Elevar os Níveis de P no Solo pela Adubação Corretiva

Para um máximo rendimento das culturas e elevar os níveis de fósforo (P) no solo, através da adubação corretiva, se preconiza a utilização de 3 a 10 kg de P2O5 solúvel em água para cada 1% de argila que o solo apresenta, para as culturas anuais.

Qual a quantidade de fósforo, na forma de P2O5, a ser adicionada ao solo com 200 g/kg de argila, usando-se os superfosfatos simples e triplo para elevar o nível do fósforo em 8 kg de P2O5. Como o supersimples fornece enxofre (S) e o supertriplo possui na sua composição o CaO, quais as dosagens a serem empregadas nos dois fertilizantes e os teores de enxofre(S) em kg/ha e o de cálcio (Ca) em cmolc/dm³?
Temos então um solo com 200 g/kg de argila = 20% de argila
"Como se usará 8 kg/ha de P2O5 para cada 1% de argila"
8 x 20 = 160 kg/ha P2O5
1) Utilizando o superfosfato simples (SS)

100 kg SS ................. 18 kg P2O5
......X......................... 160 kg de P2O5
X = (160 x 100) / 18 = 890 kg/ha de SS
Qual o teor de enxofre (S)?
100 kg SS .............. 8 kg de S
890 kg SS.....................X........
X = (890 x 8) / 100 = 71 kg de S/ha.

2) Utilizando o superfosfato triplo (ST)
100 kg ST .......... 42 kg P2O5
......X................. 160 kg P2O5
X = (160 x 100) / 42 = 380 kg/ha de superfosfato triplo.
Em relação ao cálcio,
100 kg ST ........... 12 kg CaO
380 kg ST ...................X......
X = (380 x 12) / 100 = 45,6 kg CaO/ha
"Podemos calcular o cmolc/dm³ de Ca, multiplicando cada 1% de CaO do produto pela constante 0.01783".
45,6 kg/ha CaO x 0,01783 = 0,81 cmolc Ca/dm³ 

quinta-feira, 17 de setembro de 2009

Os fertilizantes Fluidos - emprego na cana-de-açúcar

Os fertilizantes fluidos apresentam-se nas formas de soluções e de suspensões.
Soluções: são soluções líquidas verdadeiras, isenta de sólidos.
Suspensões: apresentam uma fase sólida dispersa em um meio líquido. Podem ser homogêneas e heterogêneas. No seu preparo é necessária a utilização de agentes de suspensão que aumentam a viscosidade e evitam a formação de precipitados na mistura. Estes agentes de suspensão podem ser argila, bentonita sódica.
Em relação aos fertilizantes minerais, os fertilizantes fluidos apresentam uma série de vantagens:
1) economia na mão-de-obra;
2) facilidade de manuseio;
3) dosagem precisa e uniforme;
4) homogeneidade;
5) versatilidade nas formulações. Podem ser misturadas com defensivos;
6) maior eficiência agronômica.
Mas apresentam, por outro lado, uma série de desvantagens:
1) menor concentração de nutrientes;
2) necessidade de agitação durante o transporte (suspensões)
3) alto investimento inicial;
4) maior dificuldade para produzir formulações PK.

Existem usinas que produzem fertilizantes fluidos, os quais são formulados a partir dos fertilizantes minerais simples como amônia, uréia, uran, MAP, DAP, ácido fosfórico, cloreto de potássio e micronutrientes na forma de sais solúveis.
Nas soluções, as formulações produzidas são:

Cana planta – 02-10-10; 02-12-12; 03-10-08; 03-10-12; 04-10-10
Cana soca – 07-00-10; 07-02-10; 08-00-09; 10-00-10; 20-00-00
Por ser as concentrações de nutrientes muito baixas, estes fertilizantes devem ser utilizados em áreas próximas às Usinas, devido o custo elevado do transporte.
Na produção de suspensões são utilizadas a uréia, nitrato de amônio, sulfato de amônio, DAP, MAP, cloreto de potássio e micronutrientes na forma de sais solúveis. As suspensões precisam de agitação para manter a homogeneidade. Além disto, são adicionadas argilas, bentonitas sódica para manter estabilizada a suspensão. As fórmulas em suspensão fabricadas são:

Cana planta: 03-15-15 ; 04-16-10

Cana soca – 10-00-15 ; 12-00-18 ; 16-00-16

Os fertilizantes fluidos podem ser aplicados de diversas maneiras na cana. Ou seja:
1) diretamente no solo;
2) superficial ou em profundidade;
3) misturado ou não com herbicidas (ver compatibilidade);
4) pulverização nas folhas;
5) fertirrigação.

Adubação da cana
Cana planta: necessidade de nutrientes em kg/ha: 40 N – 150 P2O5 – 120 K2O + 1kg de boro + 3 kg de zinco + 2 kg de cobre
Temos uma relação NPK = 40-150-120. Dividindo por 40 teremos uma relação simplificada 1-3,75-3 (ver postagem sobre “O que contém um saco de adubo”. Multiplicando esta relação simplificada por coeficientes teremos várias fórmulas. Multiplicando por 4 a relação, obteremos a fórmula: 04-15-12. Para saber a quantidade a ser aplicada dividimos a recomendação de N (40) pelo número expresso na fórmula referente a este nutriente N (4) e multiplicamos por 100. Isto é, 40/4 x 100 = 1.000 kg/ha da fórmula mais os micronutrientes recomendados acima.
Cana soca – necessidades de nutrientes em kg/ha: 130 N – 0;30 P2O5 – 100 K2O + 1 kg de boro .
Temos uma relação NPK = 130-0;30-100. Vamos supor 0 kg/ha de P2O5. Dividindo por 100 teremos a relação simplificada 1,3-0-1. Multiplicando por 12, teremos a fórmula: 16-00-12. Dividindo a quantidade recomendada de N (130) pelo N (16) da fórmula, teremos (130/16) x 100 = 812 kg/ha + 1 kg de boro.
Cana queimada – necessidades em kg/ha = 100 N – 0;30 P2O5 – 130 K2O.
Fazendo o exercício acima teremos a fórmula 12-00-16, aplicada na base de 812 kg/ha + 1 kg de boro
Fertirrigação: em kg/ha – 180 N + 150 K2O + 30 S
Teremos a fórmula 180 – 0 – 150. Relação simplificada= 1,2-0-1. A fórmula que vai ser encontrada, fazendo os cálculos conforme explicado anteriormente, será: 15-00-12 na base de 1.200 kg/ha. Quanto ao enxofre, ele pode ser adicionada nesta fórmula desde que se use como uma das fontes de nitrogênio, o sulfato de amônio.
Aplicação aérea: 15 a 20 kg/ha de N + 200 g/ha de Mo.

Fonte: Utilização da adubação fluida na cultura da cana-de-açúcar. Cozze, Riolando – Bunge – Jaú-SP

terça-feira, 8 de setembro de 2009

Calagem e Adubação do arroz irrigado no RS - Parte II

Na "Calagem e Adubação do arroz irrigado no RS - Parte I, comentamos sobre as necessidades de calcário, interpretação da análise do solo quanto a sua necessidade, quando aplicá-lo, os micronutrientes, a toxidez do ferro. Nesta Parte II, vamos abordar os nutrientes NPK, as recomendações de adubação com estes nutrientes, de acordo com os teores dos mesmos no solo, e buscando um incremento de produtividade em t/ha, ou seja, uma produção acima da média da região com cultivares que não foram adubados; de acordo com o que se espera incrementar em termos de produtividade. Busca-se incrementar o potencial dos cultivares. Os dados foram obtidos através dos pesquisadores do Instituto Riograndense do Arroz - IRGA.

O Nitrogênio (N):
O nitrogênio no solo é proveniente da decomposição e mineralização da matéria orgânica. Portanto, neste caso, a matéria orgânica avalia a disponibilidade de nitrogênio no solo. Em relação ao nitrogênio, os cultivares de arroz irrigado são divididos em três categorias:
Cultivares tradicionais: aqueles que apresentam baixa resposta à aplicação de nitrogênio;
Cultivares intermediários: apresentam resposta intermediária – variedades americanas;
Cultivares modernos: são aqueles que apresentam maior resposta ao N.
Incremento de produtividade:
As tabelas de recomendação de nutrientes (NPK) são baseadas nos “rendimentos potenciais” de cada região, e no “incremento de produtividade”. O “rendimento potencial” de uma região é a produtividade média alcançada sem adubação. Por isto, nas tabelas de recomendação, a seguir, encontramos incrementos de produtividade de 2, 3, 4 t/ha.




Quando a radiação solar é alta – no período de 15 dias antes do florescimento e 15 dias depois – há probabilidades de rendimentos elevados, e, portanto a resposta do arroz à aplicação de quantidades maiores de nitrogênio (N); isto se consegue quando o arroz é semeado dentro da época recomendada.
A uréia e o sulfato de amônio são as fontes de N mais recomendadas – amídica e amoniacal, respectivamente – pois, nestas condições de solo irrigado, as perdas de N por lixiviação e desnitrificação são menores. Os fosfatos diamônio (DAP) e monoamônio (MAP) usados pelos fabricantes nas formulações, como fontes de nitrogênio e fósforo, também são recomendáveis quando aplicados em cobertura.
Se a cultura anterior foi uma leguminosa/gramínea, a recomendação de N pode ser reduzida em 30%; ou se em lavouras anteriores houve ocorrência de bruzone, visto que o desenvolvimento desta doença é favorecido pelo excesso de N; ou houve um exagerado desenvolvimento vegetativo.
A aplicação de N deve ser parcelada; em solo seco utiliza-se 10 kg/ha de N e o restante em cobertura. Nas dosagens inferiores a 50 kg/ha a aplicação de N deve ser feita numa única vez por ocasião da diferenciação da panícula.
Na cobertura pode-se aplicar a metade no início do perfilhamento (emissão da 4ª folha) e a outra metade na diferenciação da panícula. Em cultivares de ciclo longo - maior que 135 dias – aplica-se 1/3 no perfilhamento, 1/3 no perfilhamento pleno e mais 1/3 na diferenciação da panícula.
No sistema pré-germinado, a aplicação de N na semeadura não é indicada pelas perdas de desnitrificação.Nos solos secos, aplicar N em cobertura três dias antes da irrigação. A irrigação incorpora o fertilizante e o deixa disponível por um período mais longo. A aplicação sobre a água deve ser com a lâmina não circulante.

O Fósforo:
O nutriente fósforo (P) tem um papel muito importante no crescimento da planta, e devido a sua baixa mobilidade no solo, sua grande translocação no interior da planta, sua dose deve ser aplicada totalmente no plantio. Os fosfatos naturais reativos misturados com os fosfatos solúveis em água têm mostrado eficiência agronômica em solos com teores de P maiores que 3 mg/dm³.
Para solos com teores de P Mehlich acima de 3 mg/dm³ pode-se utilizar fosfatos naturais reativos. Mas lembre-se! “O fosfato natural deve ser reativo”. Fosfatos naturais reativos são aqueles que aplicados ao solo apresentam eficiência agronômica. Como saber se um fosfato natura é reativo? Quando o fosfato natural apresentar alta solubilidade num extrator, o ácido fórmico a 2%, na relação 1:100. Relação 1:100 significa 1 g de fosfato diluído em 100 ml de ácido. No Mercado Comum Europeu, os fosfatos naturais são considerados reativos quando apresentam mais de 55% do fósforo total solúvel em ácido fórmico 2%, 1:100. Quanto maior esta percentagem mais reativo é o fosfato natural.
Os fosfatos naturais de Gafsa, Arad, apresentam alta reatividade. Infelizmente os fosfatos naturais brasileiros são de baixa reatividade; prestam-se mais para serem solubilizados por ácidos fortes – fosfórico, sulfúrico – para a produção de fosfatos solúveis em água.
Em solos que receberam fosfatos naturais, como fonte de P, deve-se adotar o método resina. Para solos com teores acima de 6,0 mg/dm³ e 20 mg/dm³ de P – respectivamente Mehlich e Resina – as probabilidades de retorno econômico são muito pequenas, pois estes valores são considerados teores críticos. Neste caso, a adubação fosfatada deve, apenas, repor os nutrientes retirados pelas culturas.


O Potássio (K):
O arroz irrigado é exigente em potássio (K), mas apresenta baixa resposta ao nutriente. Isto pode ser devido ao K contido na água de irrigação, os processos de troca no complexo coloidal do solo, a liberação de K nas frações não trocáveis, pela inundação, e a substituição do K pelo sódio (Na); o sódio é abundante em grande parte dos solos cultivados com arroz.
Aqui, a capacidade de troca de cátions, CTC a pH 7,0 foi considerada:
Tabela K
O cloreto de potássio deve ser o principal fertilizante a ser usado nestes solos cultivados com arroz.
O sulfato de potássio (50% de K20), em condições de temperatura alta pode liberar H2S que é tóxico para o arroz.






Exercício:
Um produtor mandou fazer a análise do solo, na área a ser plantada com arroz irrigado, e o resultado foi 2,8% de matéria orgânica M.O., médio teor de potássio (K), uma CTC a pH 7,0 de 5,4 cmolc/dm³, um teor de fósforo (P) de 2,01 mg/dm³ pelo método Mehlich, e 8,0 mg/dm³ de P pelo método Resina. A meta é um incremento de produtividade de 4 t/ha. O produtor utilizará cultivares modernos com alta resposta à adubação. Na safra 2008/2009 foi plantado uma leguminosa, a soja, e vem ocorrendo nas safras anteriores o aparecimento da doença bruzone. Quais as fórmulas de fertilizantes similares que podem ser aplicadas na lavoura ?
Pelas tabelas anteriores de recomendação, as necessidades de nutrientes NPK são:
Nitrogênio (N): 110 kg/ha;
Fósforo (P2O5): 60 kg/ha;
Potássio (K2O): 70 kg/ha
Aplicação de N:como foi plantada soja na safra anterior e vem ocorrendo ataque de bruzone, vamos reduzir a necessidade deste nutriente em 30%, ou seja, vai ser preciso 77 kg/ha.
O produtor irá aplicar 10 kg/ha de N, no plantio, e 0s restantes 66 kg/ha ele irá aplicar em cobertura, dividindo a dose em 2 aplicações: 33 kg/ha no perfilhamento, e os restantes 33 kg/ha na diferenciação da panícula.
Então no plantio, será aplicado 10 kg de N, 60 kg de P2O5 e 70 kg de K2O. Temos uma relação entre os nutrientes de 10-60-70. Vamos simplificar esta relação dividindo todos pelo menor número; neste caso, 10. Obtemos uma relação simplificada 1-6-7. Para achar as fórmulas similares, basta multiplicar esta relação por coeficientes (2,3,4,...8).
Por exemplo, multiplicando por 3 a relação simplificada, teremos uma fórmula 03-18-21. Qual a quantidade em kg/ha desta fórmula para fornecer os nutrientes que o arroz precisa? É só "dividir a necessidade de qualquer nutriente – por exemplo, 10 – pelo teor respectivo do nutriente na fórmula, e multiplicar por 100". É o caso de (10/3) x 100 = 333 kg/ha. Ou (70/21) x 100 = 333 kg/ha. No quadro abaixo são apresentadas outras fórmulas similares, seguindo este raciocínio.





Estas fórmulas encontradas baseiam-se nos dados hipotéticos apresentados como espelho dos teores de nutrientes encontrados no solo, e que serviram para a execução do exercício. Na prática, é só identificar os teores de nutrientes de uma análise do solo, estabelecer as recomendações de nutrientes, elaborar a relação simplificada, e chegar às formulas de fertilizantes similares.

Convém alertar, entretanto, que os “incrementos de produtividade” dependem da utilização de sementes certificadas, o bom manejo do solo, controle de pragas e doenças, e outras práticas, são essenciais para um incremento da produção. Esquecer isto e só pensar em adubar, não resolve nada. As recomendações de adubação são uma média da resposta do arroz irrigado à adubação e ao incremento de produtividade. As dosagens devem ser ajustadas à capacidade de resposta dos cultivares a este incremento. Nada adianta utilizar altas recomendações de nutrientes visando um máximo de incremento na produção, e utilizar cultivares de arroz tradicionais, de baixa resposta.

quinta-feira, 20 de agosto de 2009

Análise de Solos - Os Conceitos de S, CTCs, m%, V%

A análise do solo é o instrumento que o técnico utiliza para recomendar as necessidades de calagem e fertilizantes, melhorando as condições de fertilidade de um solo, para que as plantas encontrem os nutrientes que elas precisam para responder com altas produtividades. É importante o conhecimento dos conceitos abaixo para que tenhamos uma noção mais ampla das condições e manejo da fertilidade do solo. Vamos comentar a importância de cada um, as fórmulas utilizadas para cálculos da soma de bases, CTCs, percentagem de saturação por Al³, percentagem de saturação por bases (V%) e outros.
1 - Soma de bases trocáveis (S) ou (SB)

Aqui se calcula a soma dos cátions Ca² + Mg² + K + Na. Os cátions estão na forma trocável no complexo de troca do solo. Através do valor da soma de bases podemos calcular a CTC efetiva, a CTC a pH 7,0, a saturação por bases (V%).
S = Ca²+Mg²+K+Na.
O valor da soma de bases é expresso em cmoc/dm³ ou mmolc/dm³. Convém lembrar que todos os cátions devem estar expressos em cmoc ou mmolc . Se a análise do solo apresentar os cátions com unidades diferentes, eles devem ser transformados para as unidades que expressam a soma de bases. Além disto, cmoc/dm³ x 10 = mmolc/dm³. Da mesma forma, mmolc/dm³ dividido por 10 = cmoc/dm³.
"A soma de bases (S) dá uma indicação do número de cargas negativas que estão ocupados por bases nos colóides do solo".

2 - Capacidade de Toca de Cátions - CTC efetiva (t)
Esta nos diz a capacidade efetiva de um solo em reter cátions próximos do seu pH natural.
t = S + Al³
Os valores são expressos em cmoc/dm³ ou mmolc/dm³.

3 - Capacidade de Troca de Cátions - CTC a pH 7,0
É a quantidade de cátions adsorvida a pH 7,0 ou, em outras palavras, a CTC potencial do solo. Seria o valor a ser atingido se a calagem elevasse o pH a 7,0. "O máximo de cargas negativas que seriam liberadas a pH 7,0 para serem ocupadas por cátions".
A CTC a pH 7,0 (T) diferencia-se da CTC efetiva a pH natural (t), pois ela inclui o H. O íon H encontra-se em ligação covalente, muito forte, com os óxidos de ferro e alumínio, e o oxigênio (O) dos radicais orgânicos.
T = S + (H + Al³)
Se desejamos liberar cargas negativas que estão ocupadas pelo H na CTC a pH 7,0 devemos elevar o pH do solo acima de 5,5. Nesta faixa não existe mais o Al³ trocável. Em certas culturas, quando se aplicam doses elevadas de calcário ele irá neutralizar parte destes íons H ou acidez não trocável.

4 - Percentagem de saturação por Alumínio (m%)
Expressa quanto por cento da CTC efetiva está ocupada pela acidez trocável ou Al trocável.
"Seria a percentagem de cargas negativas do solo que está ocupada pelo Al³ trocável, próximo ao pH natural do solo. Ela expressa a toxidez do alumínio".
Quanto mais ácido for o solo, maior o teor de alumínio trocável, maior a percentagem de saturação por Al, menores os teores de Ca, Mg, K e, consequentemente, menor a soma de bases trocáveis.
m (%) = (100 x Al³) / t = (100 x Al³) / Ca²+Mg²+K¹+Na¹+Al³
Em solos arenosos, com alta saturação por Al³, a produção de massa verde de soja reduz consideravelmente a partir de 12% no valor m%. A soja é sensível à saturação por alumínio. Doses de calcário devem ser recomendadas para elevar a saturação por bases (V%) em 60%.
Em solos argilosos, a situação não é tão ruim. Aqui o fator limitante na produção de massa verde da soja foi a partir do valor m% de 31%. Em solos argilosos a saturação por bases (V%) deve ser elevada para 50%.
No sistema de plantio direto, deve-se considerar V = 60%.
Neste experimento, a relação Al/Ca teve comportamento drástico na produção de massa verde da soja em solos arenosos onde o valor da relação ficou em torno de 0,2. Nos solos argilosos a relação Al/Ca foi de 0,5.
Quando a saturação por Ca for inferior a 4 ou 5 vezes o alumínio, a produção de massa verde da soja cai drasticamente em solos arenosos. Já em solos argilosos, com a saturação de Ca duas vezes mais que a saturação por alumínio, ou seja uma relação Al/Ca igual a 0,5 o comportamento é menos drástico.
O efeito tóxico do Al é maior no solo arenoso do que no solo argiloso.
Quando se adiciona calcário na dosagem recomendada aumenta-se os teores de Ca e Mg e vai reduzindo os teores de Al³ (acidez trocável), até que no pH 5,6 o Al³ , praticamente, deixa de existir . Com isto o valor da percentagem de saturação por Al (m%) fica zerado. E, por consequência, a percentagem de saturação por bases da CTC efetiva deve ser 100%. Neste patamar a acidez trocável deixa de existir.
Diminuindo-se de 100 o valor encontrado em m%, teremos a percentagem de saturação por bases da CTC efetiva.

5 - Percentagem de saturação por bases (V%)
Este valor expressa quanto por cento dos pontos de troca de cátions no solo estão ocupados por bases. Ou seja, “quanto por cento das cargas negativas a pH 7,0 estão ocupadas por bases como Ca, Mg, Na e K em comparação com aquelas ocupados por Al e H; o valor V% serve para diferenciar solos pobres (V<50>50)”.
Vários Estados brasileiros utilizam o V% para recomendar a quantidade de calcário a ser aplicada ao solo, pelo método de elevação de bases.

V% = (100 x S) / T = [100 x (Ca+Mg+K+Na)] / (Ca+Mg+K+Na+H+Al)
Diminuindo-se de 100 o valor V encontramos a percentagem de saturação por ácidos da CTC a pH 7,0.

segunda-feira, 10 de agosto de 2009

Necessidade de Gessagem - Parte I

Os solos brasileiros, em geral, apresentam baixos teores de cálcio (Ca) e altos teores de alumínio (Al) trocável. Isto ocorre, com ênfase, nas camadas mais profundas. Desta maneira, o desenvolvimento radicular é superficial e aí concentrado. Disto ocorre que as plantas sofrem com os veranicos e a absorção de nutrientes é limitada à área de desenvolvimento das raízes. Comparando plantas que tiveram um aporte de gesso na camada de 20-40cm e 30-60cm elas tiveram um desenvolvimento de raízes em área e em profundidade. Nas profundidades subsuperficiais a concentração de raízes chegou a 29% e nas camadas mais profundas, ainda, a concentração de raízes foi de 19 a 12%. Já as plantas que não tiveram um aporte de gesso agrícola, a concentração de raízes foi maior na camada de até 20 cm. Nas camadas mais profundas de 40-60 cm, a concentração de raízes chegou a 1%.
Benjamin Franklin foi um líder fazendeiro e tentou aumentar a produção e qualidade das plantas. Tornou-se muito conhecido, nesta área, por ter aplicado sulfato de cálcio (gesso) em uma colina perto de Filadélfia. Ele escreveu as palavras: “Esta terra foi corrigida com gesso”.
O gesso é um subproduto das indústrias de fertilizantes. Para a obtenção do ácido fosfórico, as rochas fosfatadas são atacadas pelo ácido sulfúrico e desta reação são obtidos o sulfato de cálcio (gesso) e o ácido fluorídrico. Tratando-se a rocha fosfatada com uma quantidade maior de ácido sulfúrico, obtém-se ácido fosfórico e sulfato de cálcio (gesso) sólido em suspensão. O sulfato de cálcio é separado por filtração, originando uma grande quantidade de gesso como subproduto. Por tonelada de ácido fosfórico produzida, obtém-se quase 5 (cinco) toneladas de gesso.
Como o cálcio é pouco móvel no solo e quase nenhuma mobilidade na planta, o efeito da calagem não se observa nas camadas mais profundas. Mas o nutriente cálcio é importante para a planta. No café, as raízes vão atrás do cálcio e nos locais que ele não existe não haverá crescimento das mesmas. Por outro lado, o alumínio (Al³+), que é tóxico para as plantas quando em altas concentrações, está presente nas camadas mais profundas onde o calcário não consegue atingi-las. Desta maneira, altos teores de alumínio e baixos teores de cálcio nas camadas mais profundas não favorecem o desenvolvimento radicular e, assim, as raízes não conseguem buscar água e nutrientes.
O gesso agrícola, sulfato de cálcio, contém cálcio e enxofre (S). Contém 32% de CaO e até 19% de S. Ele se dissocia em Ca²+ e SO4²-. Mas o gesso não é um corretivo para neutralizar a acidez do solo. Tão pouco tem a capacidade de elevar a “Capacidade de Troca de Cátions – CTC”. Ele é um condicionador do solo.
Os benefícios do gesso agrícola são vários.
Entre eles:
1) o ânion SO4²- imprime uma maior mobilidade ao cálcio levando-o para as camadas mais profundas;
2) por sua vez, o íon sulfato se liga ao alumínio formando um sal, o sulfato de alumínio (AlSO4) , que é menos tóxico para a planta;
3) fornece cálcio e enxofre para as plantas.

Quando aplicar o gesso agrícola
O gesso deve ser aplicado quando, no mínimo, uma destas condições seja satisfeita:
a) teor de cálcio (Ca) menor ou igual a 0,4 cmolc/dm³ ou 4 mmolc/dm³. Para transformar cmolc em mmolc basta multiplicar por 10;
b) teor de alumínio (Al) maior que 0,5 cmolc/dm³ ou 5 mmolc/dm³;
c) saturação por alumínio (m%) maior que 30%. Alguns citam 20%.
O produtor agrícola pensando em aplicar gesso deve providenciar na análise do solo. Neste caso, a amostragem deve ser feita na profundidade de 20-40 cm ou 30-60 cm e não na de 0-20 cm como é feita normalmente. Lembre-se que para aplicar gesso, os resultados da análise devem ser de amostras retiradas das camadas mais profundas. Quando coletar amostras das camadas de 0-20, 20-40, 30-60 cm é preciso cuidar para não misturá-las. As amostras devem ser independentes de cada camada. Para isto, é bom ter o cuidado de não misturá-las e proceder à identificação de cada camada. Em geral, a profundidade mais usada é a camada de 20-40 cm.

Como calcular a quantidade de gesso agrícola
Existem várias fórmulas apresentadas pelos pesquisadores para calcular a necessidade de gesso. Vamos apresentá-las a seguir.

1) Necessidade de gessagem e quantidade de gesso:
MARTINS, André G. professor da UFV-MG estabelece a seguinte fórmula:
NG (kg/ha) = 0,30 x Necessidade de calcário recomendada para o solo.
IMPORTANTE: a necessidade de calcário é aquela recomendada para a camada de 20-40 cm onde vai ser aplicado o gesso. Esta fórmula tem apenas a importância de calcular a necessidade de gessagem (NG) e não a quantidade de gesso a ser aplicada no solo. Esta última vai ser definida pela fórmula abaixo:
QG (t/ha) = NG x (SC/100) x (PF/20), onde,
QG = quantidade de gesso em t/ha.
NG = necessidade de gessagem em t/ha calculada na fórmula anterior.
SC = superfície coberta pelo gesso (%). Para área total, utiliza-se SC=100% e para aplicação no café em faixas, SC=75%.
PF = espessura da camada onde o gesso deverá agir, em cm. Para camada de 20-40, PF = 20 cm. Para camada de 30-60 cm, PF=30 cm.
O gesso deve ser aplicado após o calcário. O calcário na camada de 0-20 cm e o gesso na camada de 20-40 cm ou 30-60 cm.
O gesso pode ser aplicado em cobertura, pois é muito móvel. Se a camada de 0-20 cm não exige calcário, pode-se aplicar o gesso em cobertura. Não há necessidade de incorporação do gesso. Uma corrente de pesquisadores recomenda aplicar calcário e gesso juntos. Outra corrente não aconselha.

2) Outra fórmula usada no café, leva em consideração o teor de argila das camadas inferiores do solo.NG (kg/ha) = 75 x argila (%), segundo Souza et al (1997). O gesso deve apresentar, no mínimo, 15% de enxofre (S).
3) Outras fórmulas utilizadas são:
Para culturas anuais – DG (kg/ha) = 50 x teor de argila (%) ou DG (kg/ha) = 5,0 x argila (g/kg)
Para culturas perenes – DG (kg/ha) = 75 x argila (%) ou DG (kg/ha) = 7,5 x argila (g/kg)

4) Vitti e Mazza (1998) apresentam a seguinte tabela para quantidade aproximada de gesso levando em consideração os valores T e V do solo.

Para visualizar o artigo "Necessidade de Gessagem - Parte II" ( clique aqui)

terça-feira, 4 de agosto de 2009

Hortaliças - Cálculo da adubação recomendada

As hortaliças são exigentes em nutrientes os quais devem estar disponíveis no solo. São plantas que esgotam o solo pois toda ela é colhida por inteiro. As adubações nitrogenadas contribuem para reacidificar o solo. Por isto, torna-se necessário um controle desta acidez através de análises de solos mais frequentes. A reaplicação do calcário é indispensável quando o pH do solo for menor que 6,0 e/ou V% menor que 80. A preferência deve ser para um calcário dolomítico que contém cálcio (Ca) e magnésio (Mg) e incorporado na profundidade de 20 cm de solo. A adubação pode ser feita em toda a área ou em sulcos. Para calcular a quantidade de adubo utiliza-se fórmulas conforme abaixo:

Cálculo da quantidade em g/m²: as recomendações de adubos são feitas em kg/ha. Para transformar em g/m² basta dividir a dose recomendada por 10.
Exemplo: 600 kg/ha de adubo 8-24-12 ; 600/10 = 60 g/m²
200 kg/ha de P2O5 = 200/10 = 20 g/m²
150 kg/ha de K2O = 150/10 = 15 g/m²

Cálculo para o plantio em camalhões: a adubação é feita em sulcos antes da confecção dos camalhões. Neste caso, transforma-se a recomendação de kg/ha para g/m linear de sulco. A fórmula é a seguinte:
g/m linear de sulco = (kg/ha*e) / 10
e
= espaçamento entre camalhões, em metro
Exemplo: 600 kg/ha de 8-24-12; espaçamento (e) entre sulcos: 0,80 metro
g/m linear de sulco = (600 x 0,80) / 10 = 4,8 g/m linear.

terça-feira, 28 de julho de 2009

Interpretação da análise de solos - Exercícios

Suponhamos que um agricultor fez a análise de solo da sua lavoura que apresentou os seguintes resultados:
PH em água – 4,6
Matéria orgânica - 25g/dm³
Ca - 0,7 cmolc/dm³
Mg - 0,3 cmolc/dm³
Al - 1,7 cmolc/dm³
H+ + Al - cmolc/dm³
P - 2 mg/dm³
K - 25 mg/dm³
Argila - 600 g/kg
Areia - 350 g/kg
Silte - 50 g/kg
1. Qual o valor da soma de bases deste solo ?Sabemos que para calcular a soma de bases, usamos a fórmula:
S = Ca + Mg + K
O potássio está expresso em mg/dm³. Deveremos convertê-lo para cmolc/dm³.
Para converter devemos usar os coeficientes abaixo:
mg/dm3 de K x 0,001 = K g/dm³
g K x 2,5582 = K cmolc /dm³
Portanto, chegamos ao resultado abaixo:
25 mg/dm³ de K x 0,001 = 0,025 g de K/dm³
0,025 g K x 2,5582 = 0,06 cmolc de K/dm³
Agora temos todos os dados para o cálculo da Soma de bases deste solo (S). Ou seja, Ca = 0,7 cmolc/dm3, Mg = 0,3 cmolc/dm3 e o K = 0,06 cmolc/dm³
S = 0,7 + 0,3 + 0,06 = 1,06 cmolc/dm³
S = 1,06 cmolc/dm³
" O solo em questão apresenta uma extrema pobreza de nutrientes Ca, Mg, P e H. Além disto tem uma acidez excessiva, médio teor de matéria orgânica e elevado teor de argila".2. Qual a CTC efetiva (t) deste solo ?
t = S + Al3+ t = 1,06 + 1,7 = 2,76 cmolc/dm³
Capacidade efetiva = t = 2,76 cmolc/dm³"A CTC efetiva de 2,76 cmolc/dm3 é baixa. O solo, nestas condições tem baixa capacidade de reter cátions mesmo apresentando 20g/kg de matéria orgânica e 600g/kg de argila. Apesar da alta percentagem de argila, elas devem ser de baixa reatividade possivelmente uma caulinita e/ou óxidos e hidróxidos de ferro e de alumínio. Mesmo nesta condição de 600g/kg de argila, as perdas de nutrientes, por lixiviação, é grande. Estas perdas podem ser minimizadas pela adição de calagem que vai liberar cátions e gerando cargas dependentes de pH".


3. Qual a Percentagem de saturação de Al³+ (m)?m (%) = 100 x Al3+ / t = 100 x 1,7 / 2,76 = 65,6%
Percentagem de saturação de Al³+ (m) = 65,6 %"A percentagem de saturação de alumínio da CTC efetiva significa que 65,5% dos pontos de troca são ocupados pelo alumínio. Nestas condições, o desenvolvimento das plantas sofrerá sérias limitações".4. Qual a CTC a pH 7,0 (T) deste solo ?Na análise da terra em consideração, o teor de (H++ Al) = 5,5 cmolc/dm³.
CTC a pH 7,0 T = S + (H + Al) = 1,06 + 5,5
CTC a pH 7,0 T = 6,56 cmolc/dm³

"A CTC a pH 7,0 confirma a baixa atividade das argilas pois o valor encontrado 6,56 cmolc/dm³ é baixo, embora em relação a CTC efetiva houve um aumento de 137%".5. Qual a percentagem de saturação de bases (V%) da CTC a pH 7,0 ?V% = 100 x S / T V% = 100 x 1,06 / 6,56 = 16,2 %
Percentagem de saturação de bases da CTC a pH 7,0 = V% = 16,2 %

6. Qual a percentagem de saturação de ácidos (M) ?
M% = 100 – V = 100 – 16,2 = 83,8%Percentagem de saturação de ácidos M = 83,8%

quinta-feira, 23 de julho de 2009

Cana-de-açúcar - Nutrientes e adubação (2)

Na Parte I tivemos a oportunidade de comentar a extração e exportação de nutrientes do colmo e folhas da cana-de-açúcar, a importância dos mesmos, as deficiências dos macros e micronutrientes, a necessidade da correção do solo.
Cana-de-açúcar - Nutrientes e adubação (Parte 1)

A recomendação de calcário para a cana planta, no Estado de São Paulo, baseia-se na percentagem de saturação por bases (V%).
NC = (V2 - V1) T / PRNT, onde
V2 = % saturação por bases que se quer atingir (60%)
V1 = % saturação por bases conforme análise do solo
T = capacidade de troca de cátions em cmolc/dm³
NC = necessidade de calcário em t/ha
Para quem não se lembra:
T = S + (H+Al) em cmolc/dm³
S = Ca+Mg+K em cmolc/dm³
1 cmolc/dm³ = 10 mmolc/dm³
Por exemplo: V1 = 12% ; V2 = 60% ; T = 15 cmolc/dm³ ; PRNT = 80, logo
NC = (60-27) x 15 / 80 = 6, 18 t/ha

Vitti & Mazza apresentam uma fórmula para o cálculo da necessidade de calagem (NC) levando em consideração os resultados das amostras colhidas de 0-20 cm e de 20-40 cm.
NC = (V2-V1)CTC¹ + (V2-V1)CTC² / PRNT
CTC¹ = T¹ = capacidade de troca de cátions da camada de solo de 0-20 cm
CTC² = T² = capacidade de troca de cátions da camada 20-40 cm
Nesta fórmula, a NC t/ha seria a quantidade de calcário para aplicar na camada de 0-40 cm de solo.Luz & Martins, citados por Vitti, apresentam a seguinte fórmula para a cana planta.
NC = (V2-V1)CTC¹ /PRNT + 1/2(V2-V1)CTC² /PRNT
A NC encontrada em t/ha é para a incorporação do calcário na camada de 0-40 cm.
A COPERSUCAR, recomenda para solos arenosos a seguinte fórmula para encontrar a NC.
NC = 3 - (Ca+Mg) x 100 / PRNT
NC = t/ha para a camada de 0-20 cm.
Na cana soca, Vitti & Mazza indicam a seguinte fórmula para calcular a necessidade de calagem.
NC t/ha = (V2-V1)T / PRNT . A dose máxima deve ser de 3 t/ha.Na fabricação do superfosfato simples, há uma grande produção de um subproduto - o gesso ou sulfato de cálcio dihidratado. O gesso é mais solúvel e mais móvel que o calcário e fornece nutrientes como o Ca e S para as plantas, corrige áreas sódicas e é um ótimo condicionador para estercos reduzindo as perdas de N por volatilização. Na correção das áreas sódicas, o Ca do gesso substitui o sódio (Na) adsorvido à argila com formação de sulfato de sódio que é móvel no solo. Por ser mais solúvel que o calcário, o gesso corrige a acidez do solo mais rapidamente além de liberar cálcio para absorção pelas plantas e desenvolver o sistema radicular com grandes benefícios para os cultivos. O gesso pode ser utilizado nas áreas de depósito da vinhaça as quais apresentam excesso de potássio. Neste caso, haverá formação de sulfato de potássio que é bastante móvel no perfil do solo. A aplicação e incorporação do gesso, com irrigação, promove uma substituição do potássio (K) adsorvido aos coloides do solo pelo cálcio (Ca) contido no subproduto. O gesso deve ser usado quando a amostragem de 20-40 cm apresentar teores de Ca menor que 0,5 cmolc/dm³ ou 5,0 mmolc/dm³, alumínio (Al) maior que 0,5 cmolc/dm³ ou 5,0 mmolc/dm³, saturação por alumínio (m%) maior que 30% e saturação por bases (V%) menor que 35%. No cálculo da necessidade de gesso busca-se atingir V2 = 50%. na camada de 20-40 cm.
NG = (V2-V1)T / 100  
NG (t/ha) = (50-V1).T / 100
Os valores V1, T são os encontrados nos resultados de análise das amostras colhidas na profundidade de 20-40 cm.A fosfatagem é uma prática que proporciona maiores volumes de P no solo, mas o problema é a maior fixação. Esta prática promove um melhor desenvolvimento radicular das plantas com melhor absorção dos nutrientes e da água do solo. Pelo desenvolvimento, as raízes vão mais longe, explorando um maior volume de solo, encontrando nutrientes e água para suportar melhor os períodos de estiagem. Os produtores devem buscar as recomendações de um técnico quanto às necessidades e quantidades de fósforo nos canaviais.
Na adubação verde preferir sempre uma leguminosa devido a fixação do nitrogênio do ar pelas bactérias fixadoras que vivem em simbiose nas raízes. Isto faz com que a adubação nitrogenada seja dispensada. A utilização da adubação verde assegura um melhor controle e menor perdas de solo carregado de nutrientes, pela erosão. A incidência de ervas daninhas é diminuída.
Quanto à adubação orgânica, os dois principais resíduos orgânicos da cana-de-açúcar são a torta de filtro e a vinhaça. A torta de filtro é rica em P2O5 e CaO e é utilizada na cana planta, em toda a área, nas dosagens de 30 a 60 t/ha. A torta substitui, total ou parcialmente, a adubação fosfatada, sempre procurando verificar a dosagem de P2O5 recomendada.
A vinhaça é empregada na cana soca fornecendo todo o K2O e parte de N. O restante do N deve ser aplicado em cobertura através dos adubos nitrogenados existentes no mercado.
Quanto à adubação de plantio, deve ser processada através da análise do solo. No sulco usa-se P e K. O nitrogênio (N) é aplicado na dose de 30 a 40 kg/ha. Se foi feita a rotação de culturas com uma leguminosa, dispensa-se o uso deste nutriente. A ureia aplicada em solos cobertos por palhada provoca perdas elevadas de N por volatilização de 50 a 94%. A chuva ou a irrigação com vinhaça pode reduzir esta taxa, pois arrastam o fertilizante para as profundidades do solo diminuindo a volatilização. O sulfato de amônio não sofre grandes perdas por volatilização mas a desnitrificação se faz presente. Quanta à palhada, as altas relações C/N, C/P e C/S indicam uma baixa de nutrientes N, P e S, e a planta responderá à adubação nitrogenada.
Vitti recomenda em solos com menos de 25% de argila, usar 100 a 150 kg/ha de P2O5 em toda a área e 100 kg/ha de P2O5 no sulco de plantio. Já em solos arenosos, aplicar 100 kg/ha de K2O no sulco de plantio e o restante em cobertura.
Na adubação da cana soca, para cada tonelada de colmos esperada, aplicar a dose de 1 kg/ha de N. Se a produção esperada é de 100 toneladas de colmos, aplicar 100 kg/ha de N. Quanto ao K, aplicar quantidades de acordo com a produção esperada e conforme os teores do nutriente nas amostragens de solos das soqueiras. Manter a relação N:K2O de 1:1 ou 1:1,5.

sexta-feira, 8 de maio de 2009

Quantidade de Ca e Mg Aplicado ao Solo por Dois Diferentes Calcários

Vamos calcular a quantidade de Ca e Mg expressos em cmolc/dm³ de duas fontes de calcário: o calcítico com 60% de CaO e o calcário dolomítico com 36% de CaO e 15% de MgO.

1° PASSO: transformar CaO em Ca
Pela Tabela 2.A, teremos:

1 kg CaO x 0,71470 = 0,71470 kg de Ca

1% de CaO equivale a 1 kg CaO/100kg de calcário ou 10 kg de CaO/1000 kg.
Pela Tabela 2A, 10 kg CaO x 0,71470 = 7,1470 kg de Ca ou 7.147,3 g de Ca.

2° PASSO:  Transformar g Ca em cmolc Ca
Na mesma Tabela 2.A, para transformar g Ca em cmolc de Ca basta multiplicar g x 4,9900.
Então:
1 cmolc Ca = 7.147,3 x 4,9900 = 35.665,027 cmolc Ca

Conclui-se que para cada 1% de CaO, aplicando 1 t/ha corresponde a 35.665,027 cmolc Ca/ha. Ou, se nosso calcário tem 60% de CaO.
35.665,027 cmolc Ca x 60 = 2.139.901,6 cmolc Ca /ha.
1 hectare = 10.000 m² = 1.000.000 dm²

Considerando uma camada de solo arável de 20 cm que é igual a 2 dm, teremos:
1 hectare = 1.000.000 dm² x 2 dm = 2.000.000 dm³. Logo,
2.139.901,6 cmol Ca/dm³.......... 2.000.000 dm³
X  cmolc/dm³ de Ca em ................... 1 dm³
X = (2.139.901,6 x 1) / 2.000.000 = 1,07 cmolc/dm³ de Ca

Com o calcário dolomítico, o mesmo raciocínio nos leva:
35.665,027 cmolc Ca x 36 = 12.839.409 cmolc Ca ou 0,64cmolc/dm³ de Ca

3° PASSO: Transformar g MgO em g Mg
1 kg MgO x 0,60311 = 0,60311 kg de Mg
No caso do MgO, 1% de MgO equivale a 1 kg MgO/100 kg ou 10 kg MgO/1000 kg.
Pela Tabela 2.A, vamos transformar MgO em Mg.
10 kg MgO x 0,60311 = 6,0311 kg Mg ou 6.031,1 g Mg
1 cmolc Mg = 6.031,1 x 8,.2304 = 49.638,365 cmolc Mg

Cada 1% MgO corresponde, numa aplicação de 1 t/ha de calcário dolomítico,
à 49.638,365 cmolc de Mg.
O calcário dolomítico possui 15% de MgO.
49.638,365 x 15 = 744.575,47 cmolc de Mg/ha ou 0,37 cmolc/dm³ de Mg.

744.575,47 cmolc/dm³ Mg ......2.000.000 dm³
................X cmolc/dm³...................1 dm³

X = (1 x 744.575,47) / 2.000.000 = 0,37 cmolc/dm³ Mg

Conclusão:

1.000 kg de calcário calcítico fornece – 1,07 cmolc/dm³ de Ca
1.000 kg de calcário dolomítico fornece – 0,64 cmolc/dm³ de Ca e 0,37 cmolc/dm³ de Mg

Os cálculos acima foram para você se familiarizar com o raciocínio e relembrar como chegar aos mesmos. Existe uma maneira simplificada que você chega aos mesmos resultados.
Os fatores abaixo são para ser lembrados pois chegam aos mesmos resultados acima de uma maneira mais rápida. Para cada 1 tonelada/ha aplicada de calcário:

Para cada 1% de CaO o fator a ser usado é: 0,01784 cmolc/dm³ de Ca²+
Para cada 1% de MgO o fator a ser usado é: 0,02481 cmolc/dm³ de Mg²+

Nos perguntamos, agora, donde veio esses coeficientes e como recuperá-los se os esquecermos.
Em 100 kg de calcário temos 1 kg de CaO, logo em 1000 ton. de calcário teremos 10 kg de CaO.
10 kg equivale a 10.000 g.
Pela tabela 2.A, g CaO para ser transformado em cmolc o fator é 3,5663. Então, 10.000 g CaO será 35.663 cmolc. 35.663 / 2.000.000 = 0,0178

O MgO encontramos 4, 9628 cmolc = 49628 / 2.000.000 = 0,02841

Aplicando estes fatores no exercício anterior, encontramos:
Calcário calcítico (60%CaO) = 60 x 0,01783 = 1,07 cmolc /dm³ de Ca²+
Calcário dolomítico (36% CaO e 15% MgO)
36 x 0,01783 = 0,64 cmolc/dm³ de Ca²+
15 x 0,02481 = 0,37 cmolc/dm³ de Mg²+

Portanto, mesmos resultados obtidos de uma maneira rápida. É só memorizar os fatores acima e os cálculos saem com rapidez.

Como já dissemos, estes resultados referem-se a 1 t/ha de calcário. se a quantidade for maior, os resultados encontrados devem ser multiplicados pela respectiva quantidade de produto a ser aplicado ao solo.

segunda-feira, 27 de abril de 2009

Interpretação da Análise do Solo - Parte 3 - Adubação

A adubação é a reposição dos nutrientes para as plantas. Cada planta tem uma necessidade de nutrientes. A análise do solo vai nos dar um espelho das condições de fertilidade deste solo. De acordo com os nutrientes disponíveis no solo, a recomendação vai se basear em tabelas fornecidas pelos órgãos de pesquisa. Para visualizar as publicações Parte 1 e Parte 2, basta acessar os links abaixo:
Interpretação Análise do Solo - Parte 1
Interpretação Análise do Solo - Parte 2

1° PASSO
Precisamos saber o teor de nutrientes no solo. Quem vai nos dar isto é o resultado da análise do solo. Para cada Estado brasileiro existe uma tabela com a classificação dos teores de nutrientes no solo.


Aqui verificamos que o K está expresso em mmolc/dm3. Para passar o teor de cmolc/dm3 para mmolc/dm3 basta multiplicar por 10. Ex.: 0,06 cmolc/dm3 de K é igual a 0,6 mmolc/dm3.
Por hipótese, seja um resultado de análise que aponta:
P (resina) = 4 mg/dm3
K = 0,05 cmolc/dm3. Para se adequar à tabela acima devemos multiplicar este valor por 10 para termos em mmolc/dm3. Ou seja, 0,5 mmolc/dm3.
Verificamos que o solo desta análise se enquadra na 1ª. faixa onde os teores de N, P2O5 e K2O são, respectivamente, 20 – 80 – 60.

2° PASSO
Agora devemos achar as fórmulas de fertilizantes que podem ser utilizadas.
Se dividirmos a recomendação 20-80-60 pelo menor número (20) teremos uma relação 1-4-3. Todas as fórmulas de fertilizantes que estejam nesta relação poderão ser usadas. O que vai diferenciar é a quantidade - quanto mais concentrada a fórmula menor a quantidade de adubo a ser aplicada. Para isto, multipliquemos toda relação por coeficientes:
x 5 = o resultado é uma fórmula 05-20-15
x 6 = 06-24-12
x 7 = 07-28-21
Qual a quantidade a aplicar de cada uma:
QF (kg/ha) = (dosagem recomendada / teor de nutriente na fórmula) x 100
QF = quantidade da fórmula de fertilizante em kg/ha
Dosagem recomendada do respectivo nutriente: ou N, ou P ou K
QF (kg/ha) = (20 / 5) x 100 = 400 kg/ha.
Com a fórmula 06-24-12 teremos QF (kg/ha) = (20 / 6) x 100 = 335 kg/ha
Com a fórmula 07-28-21 teremos QF (kg/ha) = (20 / 7) x 100 = 285 kg/ha


Nosso solo se enquadra na 1ª. faixa e as recomendações de N, P2O5 e K2O em kg/ha são 50-120-140. Se dividirmos pelo menor nutriente (50) teremos uma relação 1 – 2,4 – 2,8
Multiplicando esta relação por coeficientes teremos as seguintes fórmulas de fertilizantes:
x 7 = 07 – 16,8 – 19,6 arredondando teremos a fórmula 07 – 17 - 20
x 8 = 08 – 19,2 – 22,4 ou seja 08 – 20 – 22
x 9 = 09 – 21,6 – 25,2 ou seja 09 – 22 - 25
x 10 = 10 – 24 – 28
QF (kg/ha) = (50 / 10) x 100 = 500 kg/ha da fórmula 10-24-28
QF (kg/ha) = (50 / 7) x 100 = 715 kg/ha da fórmula 07-17-20 e assim por diante
Muitas vezes não conseguimos achar, no mercado, formulações com NPK igual ao que calculamos. Nestes casos, tenha em mente que é dada uma tolerância de ±10% . Além disto não podem ser comercializados fertilizantes sólidos NPK cuja soma dos três nutrientes é menor que 21. Para as misturas sólidas NP, PK, NK o mínimo é 18%.
Fórmula 04-10-06 soma = 20 (não pode ser comercializada)
Fórmula 00-08-08 soma = 16 (não pode ser comercializada)

As necessidades de N, P2O5 e K2O para o nosso solo, usado como exemplo, são 100-30-130. Relação 3,3 – 1 – 4,3 (divisão por 30).
x 6 = 19,2 – 06 – 25,8 ou 20 – 06 – 26
x 5 = 16,5 – 05 – 21,5 ou 16 – 05 – 22
Quantidade por hectare
QF (kg/ha) = (30 / 6) x 100 = 500 kg/ha de 20-06-26
QF (k/ha) = (30 / 5) x 100 = 600 kg/ha de 16-05-22
Não esqueçam da fórmula para encontrar as quantidades de adubo por hectare.
Espero ter atingido os objetivos de explanar de maneira fácil os conhecimentos nos 3 capítulos da "Interpretação de Análises de Solos". É só praticar. Qualquer dúvida, comentem ou peçam auxílio.

quinta-feira, 23 de abril de 2009

As Unidades Internacionais Usadas em Solos

NOVAS UNIDADES EM FUNÇÃO DO SISTEMA INTERNACIONAL

Em função da adoção do Sistema Internacional de Unidades (SI), o Brasil teve de adaptar uma série de unidades das medidas realizadas. Na área de solos as mudanças já vem sendo usadas há bastante tempo, e as antigas unidades usadas na interpretação de análises de solos foram substituídas pelas descritas abaixo. Pretendemos apenas relembrar os conceitos, principalmente para aqueles que não estão familiarizados com a interpretação de análises para recomendação de calagem e adubação. Além disto, isto vai ser importante no desenrolar de novas postagens sobre o assunto.

1. As bases de representação serão o (kg) ou o decímetro cúbico (dm³) no caso de sólidos e o litro (l) no caso de líquidos;
2. Os conteúdos serão expressos em quantidades de matéria podendo ser usado o (molc) ou o milimol de carga (mmolc) ou em massa com alternativas de grama (g) ou miligrama (mg);
3. Os resultados de cátions trocáveis como, Ca²+, Mg²+, K+, Al³+, acidez potencial (H+) + (Al³+) soma de bases (S) e capacidade de troca de cátions (CTC) serão apresentados em mmolc/dm³. O que significa multiplicar por 10 os resultados apresentados em cmolc/dm³ ;
4. A saturação de bases (V%) e a saturação de Alumínio (m%) continuam sendo expressas em (%);
5. Para os resultados que eram apresentados em ppm ou ug/cm3, como (P), (S-SO4), (Zn), (Fe), (Mn), (Cu), (B), a nova unidade será mg/dm3;
6. Os resultados de matéria orgânica (MO) serão apresentados em g/dm³ ou g/kg se as alíquotas forem medidas em peso, sendo os valores dez vezes maiores que os anteriormente expressos em porcentagem. Eventualmente, poderá ser utilizado o dg/dm³ ou dag/kg os quais equivalem aos valores expressos em percentagem;
7. Apesar da possibilidade de ser usado o cmolc/dm³ (centimol de carga), que é igual ao meq/100cm³, é recomendada a utilização do mmolc/dm³.



DICAS
meq/100cm³ (antigo) = cmolc/dm³3
meq/100cm³(antigo) x 10 = mmolc/ dm³
cmolc/dm³ x 10 = mmolc/ dm³
mg/dm³ = ppm (antigo)
% matéria orgânica x 10 = g/dm³ ou g/kg (se o laboratório usou a medida em volume ou peso)
K mg/dm³ x 0,0025641 = cmolc/dm3
K mg/dm³ x 0,025641 = mmolc/ dm3
A utilização do cmolc/dm³ ou mmolc/dm³ depende da tabela de adubação que será usada baseada nos dados expressos pelo Laboratório de Solos.

sexta-feira, 17 de abril de 2009

Encontrando Fórmulas Similares de Adubos

Temos a recomendação de nutrientes NPK, conforme a análise do solo, e no mercado existe uma enorme quantidade de fórmulas. Como escolhermos as que se adaptam à recomendação? Outras vezes nos é recomendada uma fórmula de fertilizante e não a encontramos no mercado. Como escolher outras que nos dêem a mesma quantidade de nutrientes variando apenas na quantidade a ser aplicada ao solo? Vamos tentar explicar como diversas fórmulas que estão na mesma relação de nutrientes podem ser usadas sem prejuízo na dose NPK.

Seja uma mistura de grânulos com fórmula comercialmente vendida como 05-30-15.
Isto quer dizer que esta mistura contém: 5% de Nitrogênio;30% de Fósforo (P2O5); 15% de Potássio (K2O) .
Isto quer dizer que em cada 100 kg deste adubo (2 sacos) teremos: 5 kg de N; 30 kg de P2O5 e 15 kg de K2O. Em 1.000 kg ou 1 tonelada teremos: 50 kg de N ; 300 kg de P2O5 e 150 kg de K2O .
Se somarmos os nutrientes da fórmula acima veremos que existe 50% de nutrientes ou seja 50 kg de NPK em 100 kg de adubo ou 500 kg de NPK numa tonelada.
Então vem a pergunta: Eu compro 100 kg de adubo e têm somente 50 kg de NPK. E os restantes 50 kg ?
Como não existem matérias primas que possuem 100% de N, 100% de P2O5 e 100% de K20, os restantes 50% são outros nutrientes que fazem parte da composição das mesmas. Por exemplo: o sulfato de amônio não contém somente nitrogênio (N) mas contém, também, na sua composição carbono (C.) e oxigênio (O).
O superfosfato simples além do fósforo (P) contém cálcio (Ca), hidrogênio (H) e oxigênio (O). O cloreto de potássio contém também, além do potássio, o cloro (Cl).

ESCOLHA DAS FÓRMULAS DE ADUBO BASEADO NA RELAÇÃO DE NUTRIENTES:
1. Vamos escolher uma cultura de milho e dentro das recomendações para o RS+SC, as referentes a um solo, com 2% de matéria orgânica, baixo teor de fósforo e muito baixo teor de potássio, correção gradual (1° cultivo).
Os valores encontrados foram:
Nitrogênio: 80 kg/ha ou seja 20 kg no plantio e 60 kg em cobertura;
Fósforo (P2O5): 85 kg/ha
Potássio (K2O): 110 kg/ha
Teremos então no plantio, na seqüência NPK :
20 (N) – 85 (P2O5) – 110 (K2O)
Dividindo estes números pelo menor (20), teremos uma relação: 1 – 4,25 – 5,5

Multiplicando-se estes índices por coeficientes, teremos diversa fórmulas NPK compatíveis que poderão ser usadas mas, é claro, em quantidades diferentes.
X 4 = 4 – 17 – 22
X 5 = 5 – 22 – 28
X 6 = 6 – 26 – 33
Todas são formulações compatíveis que podem ser usadas pois estão numa relação perfeita com as necessidades de nutrientes.
Se permite uma variação de ± 10% nas quantidades recomendadas para se adequarem às formulações de adubos existentes no mercado.
Para saber a quantidade de cada uma destas formulações para ser aplicada por hectare a operação é a seguinte: como os números das fórmulas estão numa relação perfeita entre eles, podemos usar qualquer um deles para calcular a quantidade.
Relembramos, como já vimos anteriormente, uma fórmula 5-30-15 quer dizer que em cada 100 kg teremos 5 kg de N, 30 kg de P2O5 e 15 kg de K2O .
Por exemplo a fórmula 04 – 17 – 22 encontrada acima: tem 4 kg de N, 17 kg de P2O5 e 22 kg de K2O em cada 100 quilos.
A fórmula matemática a ser empregada é:
N.A (kg/ha) = (Dose de nutriente recomendada x 100) / Teor do nutriente na fórmula (%)



N.A. (kg/ha) = (20 x 100) / 4 = 500kg/ha
N.A (kg/ha = necessidade de adubo em kg/ha.
Portanto teríamos que usar 500 kg/ha desta formulação.
Se utilizarmos o teor de fósforo na formulação chegaríamos ao mesmo resultado.
N.A. (kg/ha) = (85 x 100) / 17 = 500 kg/ha

E se a escolha for a fórmula 5 – 22 – 28 ?
N.A (kg/ha) = = 400 kg/ha (baseado no teor de N) 5
N.A (kg/ha) = (20 x 100) / 5 = 400 kg/ha

E se a escolha for a fórmula 6 – 26 – 33 ?
N.A (kg/ha) = (20 x 100) / 6 = 335 kg/ha
Quanto mais concentrada a fórmula menor a quantidade de adubo por hectare.

domingo, 12 de abril de 2009

Acidez do Solo

O grau de acidez de um solo é expresso em termos de pH, que é a concentração do íon H+ na solução do solo. Os valores do pH aumentam a medida que decresce a concentração de H+.
O calcário reduz a acidez do solo porque diminui a concentração de íons H+, aumentando o pH e convertendo uma parte dos íons H+ em água.

TIPOS DE ACIDEZ:

1. Acidez ativa:
É a concentração do de H+ na solução do solo e é expressa em pH numa escala que varia de 4,0 a 7,5. A correção deste tipo de acidez é feita pela adição de calcário. Entretanto, outros tipos de acidez se formam como a acidez trocável que tende a manter altos índices de acidez ativa.

2. Acidez trocável:
Também chamada “acidez nociva” é a concentração de Al³+ e H+ trocáveis e adsorvidos nos coloides. É expressa em cmolc/dm³ ou mmolc/dm³. Pode ser expressa, também, “Al trocável” visto que os solos minerais apresentam pouco H+ trocável enquanto os orgânicos apresentam altos níveis de H+ trocável.
Portanto, “acidez trocável” e “Al trocável” são equivalentes.
Solos com toxidez de alumínio significa que apresentam altos índices de acidez trocável ou acidez nociva. A calagem tem por objetivo eliminar esta acidez.

3. Acidez não trocável:

É expressa em cmolc/dm³ ou mmolc/dm³. É a quantidade de acidez que ainda permanece no solo com a eliminação da acidez trocável.
Na acidez não trocável, o H+ está em ligação covalente com as frações minerais e orgânicas do solo, difícil de ser rompida. É prejudicial ao desenvolvimento das plantas e as necessidades de calagem são maiores ocorrendo uma neutralização total ou parcial.
A acidez não trocável nos dá uma estimativa das cargas negativas que podem ser liberadas quando o pH do solo for 7,0.

Acidez não trocável = Acidez potencial ou total - Acidez trocável.4. Acidez potencial ou acidez total:
É expressa, também cmolc/dm³ ou mmolc/dm³. É o total de H+ em ligação covalente mais H+ e Al³+ trocáveis.
Acidez Trocável + Acidez Não Trocável = Acidez Potencial

SOMA DE BASES TROCÁVEIS:

É expressa em cmolc/dm³ ou mmolc/dm³. É a soma (S) cálcio, magnésio, potássio, algumas vezes o sódio (Na), na forma trocável. A soma de bases trocáveis (S) dá uma indicação do número de cargas negativas do coloide que está coberta por cátions.
É importante pois junto com os valores de Capacidade de Troca de Cátions (CTC) efetiva e Al trocável permite calcular a percentagem de saturação de Al e percentagem de saturação de bases desta CTC. Em comparação com a Capacidade de Troca de Cátions (CTC) a pH 7,0, permite avaliar a Percentagem de Saturação de Bases (V%) desta CTC, importante para o cálculo da calagem.

Cálculo da Soma de Bases Trocáveis (S):

S= Ca²+ + Mg²+ + K+ + (Na+)

CAPACIDADE DE TROCA DE CÁTIONS EFETIVA (t):


É expressa em cmolc/dm³ ou mmolc/dm³. Indica a capacidade efetiva de troca de cátions do solo. É a capacidade do solo em reter cátions em pH próximo de 7,0.

CTC efetiva (t) = S + Al³+

PERCENTAGEM DE SATURAÇÃO POR ALUMÍNIO (m%):

Indica quanto por cento da CTC efetiva estão ocupados por Al trocável ou acidez trocável. Expressa a toxidez do alumínio (Al). Quanto mais ácido é um solo maior é o teor de alumínio trocável e menor os teores de bases, menor a soma de bases e maior a percentagem de saturação de alumínio. Os prejuízos para as plantas, neste caso, são significativos.


m% = (100 x Al³+) /(t)

O valor m% é classificado assim:
muito baixo – “m” menor que 1%;
baixo – “m” entre 1 a 10%;
médio – “m” entre 10,1 a 20%;
alto – “m” maior que 20%


PERCENTAGEM DE SATURAÇÃO DE ÁCIDOS DA CTC EFETIVA:
% saturação de bases da CTC efetiva = 100 - m%

onde m% é o valor da percentagem de saturação por alumínio.

CAPACIDADE DE TROCA DE CÁTIONS A pH 7,0 (T):

É expressa em cmolc/dm³ ou mmolc/dm³. Também chamada Capacidade de Troca Potencial do solo, significa a quantidade de cátions adsorvidos a pH 7,0.
É o nível da CTC de um solo que seria atingida quando a calagem for usada para elevar o pH a 7,0. Em outras palavras, o máximo de cargas negativas que seriam liberadas a pH 7,0 e que seriam ocupadas por cátions.
A CTC a pH 7,0 diferencia-se da CTC efetiva porque ela inclui o H+ em ligação covalente com o oxigênio nos colóides do solo.

T = S + (H+ + Al³+)

A CTC a pH 7,0 se divide em :
baixa – valor T igual ou menor que 5,0 cmolc/dm3;
média - quando o valor “T” está entre 5,1 a 15 cmolc/dm3 ;
alta – quando o “T” é maior que 15 cmolc/dm3.
A CTC também é usada para interpretar os valores de K no solo.

PERCENTAGEM DE SATURAÇÃO POR BASES DA CTC A pH 7,0 (V%):


Indica quanto por cento dos pontos de troca de cátions estão ocupados por bases, ou seja, quanto por cento de cargas negativas a pH 7,0 estão ocupadas por Ca²+, Mg²+, K+, (Na+), em comparação com os pontos ocupados por H+ e Al³+.
Solos com V% maior que 50 são considerados solos férteis. Os solos com V% menor que 50 são solos de baixa fertilidade.
Este índice (V%) serve para o cálculo da calagem para elevar a saturação de bases.

V% = (100 x S) /(T) = 100 x (Ca+Mg+K+(Na)) / {Ca+Mg+K+Na+(H+Al)}

No Rio Grande do Sul, o V% é classificado em quatro níveis:
muito baixo – V menor que 45%;
baixo – V entre 45 a 64%;
médio – V entre 65 a 80%;
alto – valor de V maior que 80%.

No RS, 15% dos solos apresentam pH menor que 5,5 e valor V% maior que 65%. A recomendação de calagem pelo método SMP e pelo V% podem ser diferentes. Quando as diferenças forem grandes pode-se usar a média das quantidades.

PERCENTAGEM DE SATURAÇÃO DE ÁCIDOS DA CTC A pH 7,0 (M%):

M (%) = 100 - S

A elevação da saturação de bases da CTC a pH 7,0 significa:

• Elevar o pH;

• Diminuir a saturação de Al;

• Gerar mais pontos de troca de cátions dependentes de pH.

Fontes: ANDA - BT N° 2: Manual de adubação e calagem para o RS e SC - 2004